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The objective of the present paper is to propose an e$cient, accurate and robust
four-node shear #exible composite plate element with six degrees of freedom per
node to investigate the non-linear oscillatory behavior of unsymmetrical laminated
plates. The degrees of freedom considered are three displacement (u, v, w) along x-,
y- and z-axis, two rotations (h

x
, h

y
) about y- and x-axis and twist h

xy
. The element

employs coupled displacement "eld, which is derived using moment-shear
equilibrium and in-plane equilibrium of composite strips along the x- and y-axis.
The displacement "eld so derived not only depend on the element co-ordinates but
are a function of extensional, bending}extensional, bending and transverse shear
sti!ness coe$cients as well. A bi-cubic polynomial distribution with 16 generalized
undetermined coe$cients for the transverse displacement is assumed. The element
sti!ness and mass matrices are computed numerically by employing 3]3 Gauss
Legendre product rules. The element is found to be free of shear locking and does
not exhibit any spurious modes. The element is found to be free of shear locking
and does not exhibit any spurious modes. In order to compute the non-linear
frequencies, linear mode shape corresponding to fundamental frequency is assumed
as the spatial distribution and non-linear "nite element equations are reduced to
a single non-linear second order ordinary di!erential equation. This equation is
solved by employing direct numerical integration method. A series of numerical
examples is solved to demonstrate the e$cacy of the proposed material "nite
element.

( 2000 Academic Press
1. INTRODUCTION

Fiber-reinforced composites, due to their high speci"c strength, high speci"c
sti!ness and anisotropic properties all of which can be tailored depending on the
design requirement, are fast replacing the traditional metallic structures in the
weight-sensitive aerospace and aircraft industries. These structures invariably
experience severe dynamic environment during their service and thus the excited
motions are likely to have large amplitudes. The large-amplitude analysis of
composite structures is far more complex due to (i) anisotropy, (ii) material
coupling and (iii) more pronounced transverse shear #exibility e!ects compared to
their isotropic counterparts. These structures with complex boundary conditions,
loading and shapes are not easily amenable to analytical solutions and hence one
has to resort to numerical methods such as "nite elements [1, 2]. A considerable
0022-460X/00/070221#20 $35.00/0 ( 2000 Academic Press



222 G. SINGH AND G. VENKATESWARA RAO
amount of e!ort has gone into the development of simple plate bending elements
based on the YNS theory [3] which is a consistent extension of the Mindlin's
theory for homogeneous isotropic plates. The advantages of this approach are (i) it
accounts for transverse shear deformation and (ii) it is possible to develop "nite
elements based on six engineering degrees of freedom (d.o.f.), namely three
translations and three rotations [4]. However, the low-order elements, i.e., 3-node
triangular, 4- and 8-node rectangular/quadrilateral elements lock and exhibit
violent stress oscillations. To overcome this phenomenon, many techniques have
been tried with varying degrees of success. The most prevalent technique to avoid
shear locking for such elements is reduced or selective integration scheme [5}8].
The other notable successes are hybrid and mixed methods [9}12], the modi"ed
shear strain method [13, 14] and the "eld consistency [15}17] approach. In all
these studies [5}14], shear stresses at nodes are unpredictable and need to be
sampled at certain optimal points derived from the considerations based on the
employed integration order [18]. The case of the shear locking phenomenon has
been identi"ed as the usage of same order polynomial approximations for the
transverse displacement and section rotations. These independent polynomial
approximations when substituted into the transverse shear strain expression lead to
spurious constraints in the thin plate regime. The spurious constraints a!ect the
bending energy severely and the element produces a highly sti! solution in an
attempt to satisfy the Kirchho! constraint. The techniques like reduced/selective
integration do alleviate the problem of shear locking; however, in certain cases,
zero-energy spurious modes get introduced. The severity of locking reduces
considerably with the increase in the order of element. It is mainly because the
inconsistency in transverse shear strain expression shifts to relatively less e!ective
higher order terms than the linear terms in four-node elements. The 9- and 16-node
Lagrangian elements for this reason are found to be relatively less a!ected and
reasonably well behaved though computationally expensive [19, 20].

The subject of non-linear or large-amplitude vibrations of beams and plates has
been of constant interest to many investigators since the "rst revelation of classical
elliptical function solution of simply supported beams with immovable edges by
Woinowsky-Krieger [21] and rectangular plates by Chu and Herrman [22].
Whitney and Leissa [23] formulated the governing equations for large-amplitude
vibrations of heterogeneous anisotropic plates in the von Karman sense. Since then
various approximate solution procedures and results have been reported by
numerous investigators (refer to comprehensive surveys [24}27] and standard text
books [28}30]). Sathyamoorty (25}27, 30] has reviewed more than a thousand
papers on the topic of large-amplitude vibrations of plates. Singh et al. [31}33]
proposed a direct numerical integration and modi"ed Galerkin methods for
accurate prediction of large-amplitude vibration behavior. They have also reported
that the prevalent methods such as perturbation method and Galerkin method are
inadequate for this purpose. The non-linear vibrations of beams and plates still
continue to interest the researchers as reliable predictions of the large-amplitude
motion are of great importance to avoid catastrophic failure [34]. As
a consequence, new/di!erent techniques are being attempted to study the
phenomenon [33, 35, 36]. Further, the authors have found that in spite of the
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extensive literature available on the subject, suitable results for comparison are few.
Most of the results available are in the graphical form and hence not suited for
precise and accurate comparisons.

To date, the "nite elements employed for the non-linear vibration analysis of
beams and plates are based on independent polynomials of the same order for all
the "eld variables. This type of elements with low order of interpolation
approximation for "eld varibles exhibit sever shear locking in the case of thin plates
if the associated element matrices are integrated exactly. Though quite a few
approaches have been proposed over the years to eliminate the locking and
associated problems caused by the independent and same order polynomial
approximation for all "eld variables, a possible alternative displacement "eld has
received little attention. The authors in their quest for an alternative displacement
"eld, have realized the fact that in a #exural motion, the transverse displacement
and section rotations are always coupled through transverse shear strain even for
isotropic plates. In the case of an unsymmetrically laminated plate, the in-plane and
out-of-plane responses are also coupled. This made the authors to believe that
a properly derived, coupled displacement "eld would render an e$cient, accurate,
robust and lock-free plate element. This paper is a modest attempt towards this
endeavor. The displacement "eld has been derived using equilibrium equations and
is found to be a function of mechanical properties apart from the usual element
geometry. To distinguish this class of elements from conventional ones, the authors
felt it appropriate to classify them as material "nite elements (MFE). In order to
compute the non-linear frequencies, linear mode shape corresponding to
fundamental frequency is assumed as the spatial distribution, and non-linear "nite
element equations are reduced to a single non-linear second order ordinary
di!erential equation. The non-linear equation so obtained is typically Du$ng's
equation. However, in the case of unsymmetrically laminated plates, it contains an
additional quadratic term. Direct numerical integration method is employed for the
computation of non-linear frequencies. A series of numerical example is solved to
demonstrate the e$cacy of the proposed MFE element over a wide range of plate
con"gurations.

2. GOVERNING EQUATIONS

Consider a rectangular plate composed of perfectly bonded layers of length &&a'',
width &&b'' and total thickness &&h'' as shown in Figure 1. Each layer is made up of
undirectional "bers and assumed to be a homogeneous orthotropic lamina. The
orthotropic axes of symmetry in each lamina of arbitrary thickness and elastic
properties are oriented at an arbitrary angle &&a'' to the x-axis of the plate. The
components of displacement at a generic point in the plate are expressed in the form

; (x, y, z, q)"u(x, y, q)#zh
x
(x, y, q),

<(x, y, z, q)"v(x, y, q)#zh
y
(x, y, q),

= (x, y, z, q)"w(x, y, q). (1)



Figure 1. Geometry of a laminated plate.
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In equation (1), u, v and w are displacements of the corresponding point on the
middle plane, and h

x
and h

y
are rotations of the normal to middle plane about the y-

and x-axis, respectively.
The non-linear membrane strains (e

x
, e

y
, c

xy
), curvatures (i

x
, i

y
, i

xy
) and

transverse shear strains (c
xz

, c
yz

) are related to the displacements and rotations by
the following equations:

MeN"G
e
xx

e
yy

c
xy
H"G

u,
x
#

1
2

w,2
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#
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#w,

x
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c
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w,
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#h

x
w,

y
#h

y
H , (3,4)

where a comma followed by a subscript denotes di!erentiation with respect to the
subscripted variable.

The membrane stress resultants (N
xx

, N
yy

, N
xy

), stress couples (M
xx

, M
yy
, M

xy
)

and transverse shear forces (Q
xz

, Q
yz

) in a composite plate are related to the
membrane strains, curvatures and transverse shear strains by the following
constitutive relations:

MNN"[A]MeN#[B]MiN, (5)

MMN"[B]MeN#[D]MiN, (6)

MQN"[S]McN. (7)
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In equations (5)}(7), A
ij
, B

ij
and D

ij
(i, j"1, 2, 6) are the usual extensional,

bending}extensional coupling and bending sti!ness coe$cients of the composite
laminate; S

lm
(l, m"4, 5) are the transverse shear sti!ness coe$cients of the

laminate and include 5/6 as the shear correction factor.
The potential energy functional is given by

P(u, v, w, h
x
, h

y
)"

1
2 PX

MMeNT[A]MeN#MiNT[B]MeN#MeNT [B]MiN#MiNT[D]MiN

#McNT[S]McN#R
r
hQ 2
x
#R

r
hQ 2
y
#R

t
wR 2NdX, (8)

where R
r
and R

l
are the rotational and translational inertial and X is the domain of

the plate.

3. MATERIAL FINITE ELEMENT FORMULATION (MFE)

The plate region X is decomposed into four-node rectangular "nite elements
having sub-domain X

e
and interconnected at the four corners. Let the Cartesian

co-ordinates of the nodes be (x
1
, y

1
), (x

2
, y

2
), (x

3
, y

3
) and (x

4
, y

4
) respectively.

Among the "ve fundamental unknown u, v, w, h
x
and h

y
the transverse displacement

"eld w is approximated by the complete bi-cubic as

w"c
1
#c

2
x#c

3
y#c

4
x2#c

5
xy#c

6
y2#c
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x3#c

8
x2y#c
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y3
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x3y#c
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x2y2#c
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14

x3y2#c
15

c2y3#c
16

x3y3. (9)

This "eld description was initially proposed by Bogner et al. [37] to develop a C1
continuous rectangular plate bending element for the #exural response predictions
of thin homogeneous isotropic plates. Singh et al. [31] employed the same "eld for
the #exural analysis of moderately thick laminated composite plates. They
employed a simple higher order theory involving only four "eld variables, i.e., u, v,
w
b
, w

s
. The studies of references [31, 37] indicate that complete bi-cubic

approximation for the transverse displacement w leads to a highly accurate and
lock-free (in case of refere [31]) element. However, the accuracy is at the cost of
a larger number of d.o.f. per node.

3.1. FIELD FOR IN-PLANE DISPLACEMENT u AND ROTATION h
x

To derive the "eld for in-plane displacement u and section rotation h
x
, the

equilibrium of a strip along the x-axis is considered. The equilibrium equations of
the strip are obtained from the plate equilibrium equations by dropping terms
involving derivatives with respect to y. These simpli"ed equations are
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Making use of equations (10)}(14), u
,xx

and h
x

can be expressed as follows:
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, (15)
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Assuming that the transverse shear strains are predominantly constant, we
substitute h

x
"!w,

x
and h

y
"!w,

y
on the right-hand side of equations (15) and

(16) to obtain
u,
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Note: c
17
}c

20
are additional generalized undermined coe$cients. These additional

unknowns allow bilinear variation of in-plane displacement u in the absence of
coe$cients b

1
and b

3
.

3.2. FIELD FOR IN-PLANE DISPLACEMENT v AND ROTATION h
v

To derive the "elds for in-plane displacement v and section rotation h
y
,

equilibrium of a composite strip along the y direction is considered. The
equilibrium equations are simpli"ed by dropping terms involving derivatives with
respect to x from the governing equations of a composite plate. Now, the procedure
adopted in the derivation of the "elds u and h

x
is adopted to arrive at the following

"eld description for v and h
y
:
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Note: c
21
}c

24
are additional generalized undermined coe$cients. These additional

unknowns allow bilinear variation of in-plane displacement v in the absence of
coe$cients b

2
and b

4
.

It is interesting to note that a much desired higher order polynomial
approximation for in-plane displacement "elds (u, v) in the presence of bending-
extension coupling is allowed by the "elds derived herein. However, in the case
of symmetrically laminated plates, the coe$cients b's vanish and the "eld
approximation for u and v reduces to bi-linear. The coe$cients a's tend to vanish
with the increase in side-to-thickness ratio and consistently satisfy the true
Kirchho! constraints of shearless bending, i.e., h

x
"!w,

x
and h

y
"!w,

y
, in the

extreme thin plate regime. Therefore, the element is expected to be free from shear
locking.

To verify that the derived "elds lead to a shear lock-free element, the transverse
shear strains are expressed (using equations (9), (19) and (21)) as follows:
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It is evident from equations (22) and (23) that transverse shear strains will vanish
as a

1
"a

2
"a

3
"a

4
N0. As mentioned earlier, the magnitude of a's decreases

continuously with the increase in side-to-thickness ratio of the plate and becomes
practically zero for extremely thin plates. Hence, the vanishing of transverse shear
strain does not impose any spurious constraints, whereas, in the case of the
QUAD4 bi-linear element, the vanishing of transverse shear strains does lead to
spurious constraints. The existence of these spurious constraints leading to shear
locking in the case of elements involving independent "eld interpolations can be
explained as follows.

Let the "elds w, h
x

and h
y
be interpolated by the following bilinear independent

polynomials:
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Using the "eld description (24)}(26), the transverse shear strains in a four-node
bi-linear element can be written as
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It is evident from equations (27) and (28) that vanishing of transverse shear
strains c

xz
P0 and c

yz
P0 will impose the following spurious constraints:

s
2
"0, s

4
"0, t

3
"0, t

4
"0, (29}32)

The spurious constraints (29)}(32) are responsible for the shear locking behavior
of four-node bilinear elements. The selective integration of shear energy, i.e., 1]2
for energy due to c

xz
and 2]1 for energy due to c

yz
would render the bi-linear

element lock-free. If one expresses the shear strain expressions (27) and (28) in terms
of Legendre polynomials, it will be evident that this selective integration is
equivalent to dropping the terms involving s

2
, s

4
, t

3
and t

4
. In the "eld consistency

approach, proposed by Prathap and co-workers [15}17], terms involving s
2
, s

4
,

t
3

and t
4

are dropped from the shear strain energy to obtain lock-free element.
However, the presence of multiplying coe$cient a's in shear strain expressions (22)
and (23) makes all the constraints meaningful. Therefore, the proposed MFE does
not require dropping of terms from the shear energy or selective integration of the
same and still expected to yield consistently accurate results.

3.3. MATERIAL FINITE ELEMENT EQUATIONS

To solve for the 24 unknowns (c
1
, c

2
, c

3
,2, c

24
), an additional d.o.f. h

xy
("h

x,y
#h

y,x
) at each node is introduced apart from u, v, w, h

x
and h

y
. This

additional twist d.o.f. is similar to the w,
xy

considered by Bogner et al. [37] and
Singh et al. [31]. Substitution of displacement "eld equations (9) and (18)}(21) into
potential function (8) and minimizing leads to the following "nite element
equations:

M[k]#[n
1
]#[n

2
]NMdN#[m]MdG N"0, (33)

where [k] is the linear element sti!ness matrix of size 24]24, [n
1
], [n

2
] are the

non-linear element sti!ness matrix of size 24]24 depending on MdN linearly and
quadratically respectively, [m] is the consistent mass matrix of size 24]24, and MdN
is the eigenvector of size 24]1.

The elemental matrices in the present study are integrated by employing the 3]3
Gauss quadarture formulae. These elemental equilibrium equations (33) are
assembled using the standard procedure to obtain

M[K]#[N
1
]#[N

2
]NMdN#[M]MdG ]"0. (34)

To compute the non-linear frequencies, the linear eigenvalue problem is solved as
a "rst step. The eigenvector corresponding to the fundamental frequency is
assumed as the spatial distribution and non-linear "nite element equations are
reduced to a single non-linear second order ordinary di!erential equation following
the procedure given by Singh et al. [32]. The non-linear di!erential equation so
obtained is of the following form:

AG#a A#b A2#c A3"0, (35)
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where a, b and c are the coe$cients of linear and non-linear sti!nesses and
A denotes the maximum spatial de#ection at any instant of time.

Equation (35) is solved by employing direct numerical integration method
[32, 33] to compute the non-linear frequencies/periods as follows:
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(h)A2

max
]

#P
n@2

0

dh

Ja[1#(2b/3a)F
1
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#(c/2a) F

2
(h)B2
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]

(36)

where F
1
(h)"(1#sin h#sin2 h)/(1#sin h) and F

2
"1#sin2 h. A

max
and

B
max

represent amplitudes of positive and negative de#ection half-cycles. In the
present analysis for a particular A

max
, B

max
is computed using the principle of

energy conservation (for more details refer references [32, 33]). The integrands
in equation (36) are computed numerically by employing a "ve-point Gauss
quadrature formula.

4. NUMERICAL RESULTS

In this section, the performance of the proposed element (MFE) is assessed
through a series of numerical examples involving e!ects of material coupling,
transverse shear #exibility and boundary conditions. The present "nite element
(MFE) solutions, i.e., linear frequencies for various plate con"gurations, are
compared with the corresponding QUAD4 element solutions. The bilinear
quadrilateral element (QUAD4) based on selective integration is developed for the
comparison purpose. Particular emphasis is laid on establishing the e!ects of
anisotropy, shear deformation and edge restraints on the rate of convergence and
accuracy with mesh re"nement of the MFE elements. Throughout this section,
numerical results are obtained by idealizing the whole plate. The non-linear
frequencies for various plate con"gurations are computed using direct numerical
integration method. The fundamental mode shape corresponding to 8]8 mesh
discretization over the whole plate is used to computes the a, b and c of equation
(35).

The material properties and boundary conditions considered in this section are
given in Tables 1 and 2.

4.1. INFINITESIMAL AMPLITUDE VIBRATION ANALYSIS

4.1.1. Homogeneous isotropic plates

The homogeneous isotropic plates with all edges simply supported (SSSS) or
clamped (CCCC) are descretized with progressively re"ned meshes, i.e., 2]2, 4]4,
8]8,2, 32]32 of MFE and QUAD4 elements. The variation of non-dimensional
frequency parameter ju0

corresponding to fundamental frequency u
0

with mesh
re"nement for various side-to-thickness ratios (a/h"5, 10, 100, 1000) is presented
in Figures 2 and 3. It may be noted that the performance of the proposed MFE is



TABLE 1

Mechanical properties considered in the present study

Material E
L
/E

T
G

LT
/E

T
G

LZ
/E

T
G

TZ
/E

T
t
LT

M-I 0)3
M-II 25 0)5 0)5 0)2 0)25

TABLE 2

Boundary conditions considered in the present study

Boundary condition Edge x"0, a Edge y"0, b

Simple support (SSSS) u"v"w"h
y
"0 u"v"w"h

x
"0

Clamped (CCCC) u"v"w"h
x
"h

y
"0 u"v"w"h

x
"h

y
"0
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far superior to the four-node (QUAD4). It is especially so when the side-to-
thickness ratio is large or, in other words, when the plates are thin. In fact, in case of
thin plates with all edges clamped, the authors found that even a 32]32 mesh of
QUAD4 element over the whole plate does not yield converged frequencies. Thus,
the convergence of traditional QUAD4 elements, based on independent
interpolations is very slow. The frequencies obtained from the proposed elements
are found to converge from the top in case of SSSS plates and from the bottom for
plateswith all edges clamped. This behavior is typically that of a non-conforming
element. It is because the present MFE employs coupled polynomial "elds (refer to
equations (19) and 21)), and thus the material coe$cient a's and b's appearing in the
displacement "eld are likely to in#uence its convergence characteristics. Though
the convergence behavior of the proposed element is found to be function of
boundary conditions, its rate of convergence is much faster than QUAD4.

4.1.2. Four-layer symmetric cross-ply [03/903]s plates

The comparison of frequency parameter convergence characteristics of MFE
with QUAD4 elements for square SSSS four-layered symmetric cross-ply plates is
presented in Figure 4. As in the preceding study, the proposed MFE converges
much faster, especially when plates are thin, than the conventional QUAD4
elements. The slower convergence of QUAD4 elements in the case of thin plates is
an established problem (see reference 38) whose solution in the formal manner has
been sought since long.

4.1.3. ¹wo-layer anti-symmetric cross- and angle-ply square plates

The plate con"guration considered so far did not involve material coupling
(b

i
"0), and therefore in-plane and out-of-plane responses were uncoupled. The



Figure 2. Comparison of frequency convergence characteristics of MFEM and QUAD4 for square
simply-supported isotropic plates. *o* MFEM; *f* QUAD4; ..... converged.
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response was governed by the transverse displacement and the two bending
rotations. Thus, the only non-zero coupling coe$cient in the displacement "eld
were a's. However, in the case of antisymmetric cross- and angle-ply plates, the
in-plane and out-of-plane responses are coupled. Therefore b's are non-zero. The
non-zero b's allow higher order description of the in-plane displacement "eld and
hence helps in accelerating the convergence. The comparison of convergence
characteristics of frequency parameters of such plates obtained using MFE and
QUAD4 is presented in Figures 5 and 6. It is obvious that MFE performs better
than QUAD4. It may also be observed that the convergence in the case of two-layer
angle-ply plates is from the top while for two-layer cross-ply plates, it is from the



Figure 3. Comparison of frequency convergence characteristics of MFEM and QUAD4 for square
isotropic plates with clamped edges. *o* MFEFM;*f* QUAD4; ..... converged.
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bottom. This is because the coupled polynomial "eld employed in the two cases
di!er signi"cantly owing to the values of a's and b's.

4.2. LARGE-AMPLITUDE VIBRATION ANALYSIS

The eigenvector corresponding to the fundamental frequency obtained using an
8]8 mesh over the whole plate is assumed as the spatial distribution herein and for
the rest of the section to obtain the linear and non-linear sti!ness coe$cients of
equation (35). Non-linear to linear frequency ratios (u/u

0
) at di!erent amplitudes

are computed using direct numerical integration method for various plates
con"gurations.



Figure 4. Comparison of frequency convergence characteristics of MFEM and QUAD4 for simply-
supported cross-ply [03/903]

4
plates. *o* MFEFM; *f* QUAD4; ..... converged.
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4.2.1. Homogeneous isotropic square plates

The variation of non-linear to linear frequency ratios (u/u
0
) with amplitude-to-

thickness ratio (A
max

/h) for various side-to-thickness ratios is presented in Table 3.
The edge conditions considered are (i) all edges are simply supported and (ii) all
edges are clamped. The results indicate that the frequency increases with an
increase in amplitude and decrease in side-to-thickness ratio. This is an expected
trend because an increase in amplitude implies higher membrane tension.

4.2.2. Four-layer symmetric cross-ply [03/903]
s
plates

The variation of non-linear-to-linear frequency ratio u/u
0

with amplitude-to-
thickness ratio for a four-layer symmetric cross-ply [03/903]

s
plate is presented in



Figure 5. Comparison of frequency convergence characteristics of MFEM and QUAD4 for square
simply-supported angle-ply [453/!453] plates. *o* MFEFM; *f* QUAD4; ..... converged.
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Table 4. The mechanical properties for all the composite plates considered in this
paper are of material M-II. The plates with all edges SSSS and side-to-thickness
(a/h) 5, 10 and 100 are considered to investigate the e!ects of transverse shear
#exibility on the non-linear frequencies. The study as expected indicates
a non-linear frequency increase with an increase in amplitude, the increase being
more for thick plates compared to thin plates. This indicates that the membrane
stress generated in thick plates for the same amplitude ratio is higher than the
corresponding one in thin plates.

4.2.3. ¹wo-layer cross- and angle-ply plates

The non-linear sti!ness coe$cient b in equation (35) is zero for the preceding as
well as the present study. For isotropic plates, it vanishes since bending}extension



Figure 6. Comparison of frequency convergence characteristics of MFEM and QUAD4 for simply-
supported cross-ply [03/903] plates. *o* MFEM; *f* QUAD4; ..... converged.
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coupling coe$cients B
ij

are zero. However, in the particular case of a square
antisymmetric cross-ply and even rectangular antisymmetric angle-ply plates, b is
zero. Thus, the governing equation (35) is typically a Du$ng's equation whose
solution can be found either by the perturbation method or by the direct numerical
integration method. It may be worth mentioning here that an exact elliptic integral
solution of the Du$ng's equations is also possible. The mechanical properties of
material-II are considered in Tables 5 and 6. Table 4 indicates that two-layer
cross-ply plates with simply supported edge conditions exhibit higher non-linearity
compared to two-layer angle-ply plates. Similar results for rectangular (a/b"1)2)
two-layer antisymmetric cross-ply and angle-ply plates with simply supported
edges are presented in Table 6. It is found that for rectangular antisymmetric



TABLE 3

<ariation of frequency ratio with amplitude ratio for square isotropic plates

$A
max

/h u/u
0

Simply supported (SSSS) Clampled (CCCC)

a/h"100 a/h"10 a/h"5 a/h"100 a/h"10 a/h"5

0)2 1)020(1)0196)s 1)021 1)024 1)008(1)0086)t 1)009 1)011
0)4 1)077 1)081 1)092 1)031 1)034 1)044
0)6 1)166(1)1642) 1)173 1)196 1)067(1)067) 1)074 1)096
0)8 1)279 1)291 1)328 1)117 1)128 1)164
1)0 1)411(1)4097) 1)427 1)478 1)177(1)176) 1)193 1)246
2)0 2)216 2)256 2)644 1)587 1)633 1)783

sValues in parentheses are taken from reference [39].
tValues in parentheses are taken from reference [30].

TABLE 4

<ariation of frequency ratio u/u
0

with amplitude for simply supported square four-
layer cross-ply [03/903]

s
plates

$A
max

/h u/u
0

a/h"100 a/h"10 a/h"5

0)2 1)032 1)047 1)086
0)4 1)120 1)174 1)309
0)6 1)253 1)358 1)609
0)8 1)416 1)579 1)952
1)0 1)601 1)823 2)318
2)0 2)681 3)195 4)289
ju0

230)6 149)7 77)0
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cross-ply plates, b in equation (35) does not vanish. Therefore such plates oscillate
with di!erent amplitudes in positive- and negative-de#ection half-cycles, while
antisymmetric angle-ply plates oscillte with the same amplitude in positive- and
negative-de#ection half-cycles.

The e!ects of CCCC on the variation of frequency ratio with amplitude are
shown in Table 7. For this purpose, two-layer cross-ply and angle-ply square plates
with side-to-thickness ratios 10 and 100 and made of material M-II are considered.
The computation of coe$cients a, b and c reveals that the coe$cient of quadratic
term b vanishes for this case as well. On comparing the results of this table with
the preceding study (Table 5), one "nds that shear #exibility e!ects are more
predominant in plates with clamped edges. The study shows that non-linearity
e!ects are more pronounced in two-layered cross-ply plates than angle-ply plates.



TABLE 5

<ariation of frequency ratio (u/u
0
) with amplitude ratio for simply supported square

two-layer cross-ply [03/903] and angle-ply [453/!453] plates

$A
max

/h u/u
0

[03/903] [453/!453]

a/h"100 a/h"10 a/h"5 a/h"100 a/h"10 a/h"5

0)2 1)040 1)051(1)04)s 1)084 1)023 1)033 1)059
0)4 1)149 1)189(1)18) 1)300 1)089 1)120 1)212
0)6 1)310 1)387(1)38) 1)593 1)189 1)251 1)428
0)8 1)504 1)622(1)62) 1)928 1)316 1)413 1)683
1)0 1)722 1)880(1)88) 2)287 1)462 1)596 1)962

sValues in parentheses are deduced from reference [30].

TABLE 6

<ariation of frequency ratio with amplitude ratio for rectangular (a/b"1)2) simply
supported two-layer cross-ply [03/903] and angle-ply [453/!453] plates

A
max

/h [03/903] [453/!453]

a/h"100 a/h"10 a/h"100 a/h"10

B
max

/h u/u
0

B
max

/h u/u
0

B
max

/h u/u
0

B
max

/h u/u
0

0)2 !0)185 1)035 !0)187 1)050 !0)2 1)024 !0)2 1)035
0)4 !0)353 1)131 !0)362 1)182 !0)4 1)091 !0)4 1)130
0)6 !0)522 1)273 !0)540 1)373 !0)6 1)194 !0)6 1)270
0)8 !0)698 1)451 !0)726 1)605 !0)8 1)323 !0)8 1)442
1)0 !0)881 1)656 !0)916 1)865 !1)0 1)472 !1)0 1)636
2)0 !1)848 2)871 !1)899 3)344 !2)0 2)369 !2)0 2)845
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5. CONCLUSIONS

An accurate simple four-node shear #exible composite plate element based on
coupled polynomial displacement "eld description is proposed in this paper for
the investigation of non-linear oscillatory behavior of composite plates. The
displacement "eld for the proposed MFE is derived from the equilibrium
considerations, and hence it depends not only on the element co-ordinates, but on
the material properties as well. The rate of convergence of QUAD4 elements is
highly sensitive to the lay-up, side-to-thickness ratio and boundary conditions. The
proposed MFE is practically insensitive to these parameters and continues to
converge to accurate results with relatively coarse meshes. The element employs full
Gaussian integration rules for computing the sti!ness and mass matrices, and is



TABLE 7

<ariation of frequency ratio (u/u
0
) with amplitude ratio for clamped square two-layer

cross-ply [03/903] and angle-ply [453/!453] plates

A
max

/h u/u
0

[03/903] [453/!453]

a/h"100 a/h"10 a/h"100 a/h"10

0)2 1)023 1)033 1)017 1)028
0)4 1)087 1)122 1)067 1)099
0)6 1)186 1)253 1)144 1)208
0)8 1)311 1)416 1)244 1)344
1)0 1)455 1)600 1)360 1)500
2)0 2)325 2)676 2)086 2)434
ju0

414)9 237)3 393)3 223)1
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found to be free from shear locking and any spurious modes. The displacement
"elds of the MFE change with the lay-up sequence resulting in a convergence
behavior similar to those of non-conforming elements. The direct numerical
integration method employed herein does not assume temporal variation and
yields highly accurate solutions. It is found that unsymmetrically laminated plates
oscillate with di!erent amplitude in positive- and negative-de#ection half-cycles.
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